Algebraall		
24	6	11,200
20	9	$49 \mathrm{~m} / \mathrm{s}$
22.5	$6 \sqrt{2}$	$16^{\circ} \mathrm{C} / \mathrm{min}$
75	$5 \sqrt{3}$	5040 newtons
48	\$ 18.20	64 Ft
50	160 newtons	
3	810 gcan	

| 2) $\left.\begin{array}{ll}x=k t & \frac{3}{8} \cdot 64=t \cdot \frac{8}{3} \cdot \frac{3}{8} \\ 40=k 15 & 24=t \\ \frac{8}{3}=\frac{40}{15}=k & \\ \text { 6) } & \\ y=k \sqrt{x} & \left(100=\frac{25}{\sqrt{3}} \cdot \sqrt{x}\right) \frac{\sqrt{3}}{25} \\ 25=k \sqrt{3} & (4 \sqrt{3})^{2}=(\sqrt{x})^{2} \\ \frac{25}{\sqrt{3}}=k & 16 \cdot 3=x \\ & 48=x \\ & \\ \end{array}\right]$ |
| :--- | :--- |

2) If the sales tax on a $\$ 60$ purchase is $\$ 3.90$, what would it be on a $\$ 280$ purchase?
4) The acceleration ρf an object varies directly as the force acting on it. If a force of 240 newtons causes an açceleration of $150 \mathrm{~m} / \mathrm{s}$, what force will cause an acceleration of $100 \mathrm{~m} / \mathrm{s}$?

6) At the Gourmet Grocery Mart, a 575 g can of green beans cost 39 cents and a 810 g can of the same product costs 52 cents. Which is the better buy?

$$
\begin{aligned}
\frac{39^{k}}{575 \mathrm{~g}} & =0.067 \mathrm{k} / \mathrm{g} \\
\frac{52^{k}}{810 g} & =0.069 \mathrm{k} / \mathrm{g}
\end{aligned}
$$

8) A public-opinion poll found that of a sample of 450 voters, 252 favored a school bond measure. If 20,000 persons vote, about how many are likely to vote for the bond measure?

9) Newton's law of cooling states that the rate at which an object cools caries directly as the difference between its temperature and the temperature of the gurrounding air. At the moment a steel plate at $270^{\circ} \mathrm{C}$ is placed in air that is $20^{\circ} \mathrm{C}$, its rate of cooling is $50^{\circ} \mathrm{C} / \mathrm{min}$. How fast is it cooling when its temperature is $100^{\circ} \mathrm{C}$?

$$
r=k\left(T-T_{A}\right) \quad r=\frac{1}{5}\left(T-T_{A}\right)
$$

$50=k(270-20)$
$50=250 k$
$\frac{1}{5}=\frac{50}{250}=k$
$r=\frac{1}{5}(100-20)$
$r=\frac{1}{5}(80)$
$16^{\circ} \mathrm{C} / \mathrm{min}$
16) The speed of an object falling from rest is directly proportional to
$S a$ the square root of the distance the object has fallen. When an object
has fallen 36 ft , its speed is $48 \mathrm{ft} / \mathrm{s}$. How much farther must it fall before its speed is $80 \mathrm{ft} / \mathrm{s}$?

10) The speed of an object falling from rest in a vacuum, is directly proportional t to the time it has fallen, After an object has fallen for 1.5 s , its speed is $14.7 \mathrm{~m} / \mathrm{s}$. What is its speed after it has fallen 5 s ?

$$
\begin{array}{rlrl}
V & =k t & V & =9.8 t \\
14.7 & =k(1.5) & V & V 9.8(5) \\
9.8 & =k & V & V 49 \mathrm{~m} / \mathrm{s}
\end{array}
$$

14) The centrifugal force acting on an object moving in a circle is directly proportional to the square of the speed of the object. If the force is 2240 newtons when the object is moving at $8 \mathrm{~m} / \mathrm{s}$, what is the force when the object is moving at $12 \mathrm{~m} / \mathrm{s}$?
